Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xue-Min Duan, Li-Gong Chen,* Yan-Jie Xu, Yang Li, Juan Han and Le-Ping Li

College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
dxmlhp@yahoo.com.cn

Key indicators

Single-crystal X-ray study

$T=293 \mathrm{~K}$

Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.040$
$w R$ factor $=0.096$
Data-to-parameter ratio $=9.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

9-(3-Pyridylmethyl)carbazole

The title compound, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2}$, was synthesized by N alkylation of 3-chloromethylpyridine hydrochloride with carbazole. The carbazole ring system is essentially planar and makes a dihedral angle of $87.9(3)^{\circ}$ with the plane of the pyridine ring.

Comment

Carbazole derivatives substituted by alkylpyridines possess valuable therapeutic properties. In some cases, they are able to potentiate the analgesic effect of, for example, morphine without substantially influencing the blood pressure and the vegetative nervous system (Chemische Fabrik Promonta $\mathrm{GmbH}, 1959$). N-Alkylation is one of the important routes in the synthesis of carbazole derivatives.

(I)

In this paper, the structure of 9-(3-pyridylmethyl)carbazole, (I), is reported. It was synthesized by N-alkylation of 3 chloromethylpyridine hydrochloride with carbazole.

Figure 1

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Received 21 September 2004 Accepted 29 September 2004 Online 9 October 2004

organic papers

The molecular structure of (I) is illustrated in Fig. 1. The carbazole ring system is essentially planar, with a mean deviation of $0.003 \AA$. The dihedral angle between the pyridine plane and the plane of the carbazole ring system is $87.9(3)^{\circ}$. The bond lengths and angles are in agreement with reported literature values (Allen et al., 1987).

Experimental

A solution of potassium hydroxide (7.0 g) in dimethylformamide (DMF, 50 ml) was stirred at room temperature for 20 min . Carbazole ($3.3 \mathrm{~g}, 20 \mathrm{mmol}$) was added and the mixture stirred for a further 40 min . A solution of 3-chloromethylpyridine hydrochloride (5.0 g , 30 mmol) in DMF (50 ml) was added dropwise with stirring. The resulting mixture was then stirred at room temperature for 12 h and poured into water (500 ml), yielding a white precipitate. The solid product was filtered off, washed with cold water and recrystallized from EtOH, giving crystals of (I) (yield 4.48 g, 93.7%; m.p. 389390 K). ${ }^{1} \mathrm{H}$ NMR (p.p.m.): $5.52(s, 2 \mathrm{H}), 7.10-7.47(m, 8 \mathrm{H}), 8.14(d, J=$ $4.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.49\left(d d, J_{1}=4.8, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.61(d, J=0.9 \mathrm{~Hz}$, $1 \mathrm{H}) .20 \mathrm{mg}$ of (I) was dissolved in chloroform (6 ml) and the solution kept at room temperature for 10 d . Natural evaporation gave colorless single crystals of (I) suitable for X-ray analysis.

Crystal data

```
C
Mr}=258.3
Orthorhombic, P2 2 2 2 2 
a=5.0299 (12) \AA
b=9.777 (2) A
c=28.007 (8) \AA
V=1377.4 (6) \AA}\mp@subsup{\AA}{}{3
Z=4
D}=1.246\mp@subsup{\textrm{Mg m}}{}{-3
```


Data collection

Bruker SMART CCD area-detector
1288 reflections with $I>2 \sigma(I)$
diffractometer
φ and ω scans
Absorption correction: none

$$
\begin{aligned}
& \theta_{\max }=26.5^{\circ} \\
& h=-6 \rightarrow 6
\end{aligned}
$$

7998 measured reflections

$$
k=-12 \rightarrow 8
$$

1698 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0378 P)^{2}\right. \\
& \quad+0.1963 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.10 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.12 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.096$
$S=1.07$
1698 reflections
181 parameters

$$
R_{\mathrm{int}}=0.028
$$

H -atom parameters constrained
$k=-12 \rightarrow 8$

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. H atoms were positioned geometrically, with $\mathrm{C} s p^{2}-\mathrm{H}=0.93 \AA$ and $\mathrm{C} s p^{3}-\mathrm{H}=0.97 \AA$, and refined with a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier).

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chemische Fabrik Promonta GmbH (1959). GB Patent: 822592.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

